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Abstract

Topic segmentation and labeling systems
enable fine-grained information search.
However, previously proposed methods re-
quire annotated data to adapt to differ-
ent information needs and have limited
applicability to texts with short segment
length. We introduce an unsupervised
method based on a combination of Hid-
den Markov Models and latent semantic
indexing which allows the topics of inter-
est to be defined freely, without the need
for data annotation, and can identify short
segments. The method is evaluated in an
application domain of intensive care nurs-
ing narratives. It is shown to consider-
ably outperform a keyword-based heuristic
baseline and to achieve a level of perfor-
mance comparable to that of a related su-
pervised method trained on 3600 manually
annotated words.

1 Introduction

We have previously introduced an application of
Hidden Markov Models (HMMs) to topic seg-
mentation (TS) and labeling of Finnish intensive
care unit (ICU) nursing narratives (Suominen et
al., 2008). In this application, common and re-
peatedly discussed topics, such as breathing and
hemodynamics, are identified in the text, sup-
porting information access and clinical decision-
making. In this supervised approach, annotated
training data are necessary to induce the HMM
model and consequently, the set of possible top-
ics cannot be changed without annotation of addi-
tional training data.

In this paper, we introduce a topic segmenta-
tion and labeling method where the set of pos-
sible topics is not predetermined but is provided

by the user as a set of freely chosen keywords,
such asbreathing or hemodynamics. The pro-
posed method does not require labeled training
data and is, in this respect, unsupervised. This
property allows the topics of interest to be eas-
ily changed — the user simply specifies new key-
words — whereas for a supervised TS and label-
ing system a new training set would need to be
annotated.

The proposed method is a combination of latent
semantic analysis (LSA) and a graphical model
closely related to HMMs. The method is particu-
larly suitable in cases where almost all documents
contain relevant information about the given top-
ics, and the topic segments are short, even shorter
than a single sentence. The applicability of ex-
isting unsupervised TS methods in these cases is
likely to be limited. On the other hand, super-
vised methods relying on manually labeled train-
ing data cannot be applied when the topics can be
chosen freely.

Our motivation and scope comes here from
ICU narratives. However, we believe that as
a general TS and labeling technique supporting
ad hoc information needs the introduced method
may find application also in many other, unrelated
domains. As an example of a class of texts which
are also characterized by short, unmarked seg-
ments, consider scientific publication abstracts,
where the method could be applied e.g. to sep-
arate betweenmethods and results-related seg-
ments.

2 Related work

TS (alternatively referred to as text segmenta-
tion), the automatic division of text into topically
coherent units, is a well-studied problem. Many



TS methods are based on the location of first
uses of word types, pronoun reference, punctua-
tion marks or other linguistic cues implying topic-
change boundaries. The cues are either hard-
coded domain-specific rules or induced by ma-
chine learning from a corpus (Beeferman et al.,
1997; Reynar, 1999).

Another common approach to TS is to con-
sider the similarity of text before and after a pro-
posed segment boundary by measuring, for ex-
ample, word co-occurrence, repetition or seman-
tic relations; a sudden drop in similarity indicates
a likely change in topic. Algorithms based on
this approach can be fully unsupervised (Hearst,
1997; Ferret, 2002). Further, LSA has been
shown to improve TS when used as a text simi-
larity measure (Bestgen, 2006).

A third major group of TS methods is based on
graphical models for sequence labeling. For in-
stance, HMMs have been applied (Yamron et al.,
1998; Blei and Moreno, 2001; Suominen et al.,
2008). These methods are supervised, but oth-
erwise resemble ours; the approach is a natural
choice because segmentation is given by the as-
signed topic labels.

The applicability of existing TS systems is,
however, limited in our case. To allow a free
choice of topics of interest, we aim at an un-
supervised approach. Further, our data is char-
acterized by very short segment length — sev-
eral topic changes may occur within a single
sentence. Existing unsupervised TS methods
require considerably longer segment sizes (see,
e.g., (Hearst, 1997; Ferret, 2002)) to reliably de-
tect topic change boundaries. For instance, the
TextTiling method of Hearst (1997) searches for
topic boundaries between contexts of 200 tokens,
whereas the average topic length in our data was
only 18 tokens, that is, an order of magnitude
shorter. For short texts, techniques similar to
query expansion in information extraction and use
of likely topic length have been proposed (Ponte
and Croft, 1997; Chang and Lee, 2003), but these
studies do not, however, consider topic labeling.

In our application domain, Cho et al. (2003)
have applied TS and labeling to medical narra-
tives from radiology and urology departments.
However, their method relies strongly on hard-
coded headlining rules, linguistic cues and lexi-
cal patterns seen within training examples. TS
techniques have also been designed for the tempo-

ral order analysis of medical discharge summaries
using a statistical parser to segment the sentences
into clauses and two supervised classifiers to pre-
dict the segment boundaries and assign for every
segment pair their time-wise order (Bramsen et
al., 2006). Finally, Hiissa et al. (2007) have intro-
duced a supervised system classifying segments
of intensive care patient narratives with respect to
topics ofbreathing, blood circulation, andpain;
the segments were, however, created manually.

3 Patient documentation data

The data used in this study consists of nursing
notes of 516 adult ICU patients. These Finnish
patient-specific records are written during every
shift and are mainly used for intra-unit informa-
tion exchange.

The data set consists of 17140 nursing shifts.
We apply a simple domain-adapted tokenizer, ob-
taining 1.2 million tokens (including punctua-
tion). Each shift thus contains, on average, 73 to-
kens. The most common topics of the text were
breathing, hemodynamics, consciousness, rela-
tives, and diuresis. Approximately half of the
shifts contain explicit topic headings, although
these are not standardized and are often mis-
spelled or abbreviated. Additionally, the text is
often telegraphic and the vocabulary is highly
specialized with a substantial amount of profes-
sional terminology, unit-specific documentation
practices, and frequent misspellings. Figure 1 il-
lustrates the data.

As test data, we use a manually annotated sub-
set consisting of 402 shifts randomly chosen from
the records of first 135 patients by their admis-
sion date (Suominen et al., 2008). In the annota-
tion we identify segments belonging to the topics
listed above; text not belonging to any of these is
assigned the topicother. The average length of a
topic segment is 18 tokens.

4 Method

We now first recall basic notions of LSA and
HMMs and then proceed to introduce the unsu-
pervised TS and labeling method which is based
on their combination. The main insight of the pro-
posed method is that the LSA similarity of words
to the given topic keywords can be used to replace
HMM emission probabilities. Whereas a super-
vised HMM requires labeled data to estimate the



a)

Night shift

B R E A T H I N G: Doing nicely with the mask. Smallish

carbondioxide retention after pain killers, otherwise CO2 <

8.Hourly breathing exercises. Mucus -> wheezing. Able to

cough faintly&swallow mucus.

C O N S C I O U S N E S S: Spontaneously awake.

DRUGNAME 5mg i.m. After that, was able to nod

peacefully. Copes the breathing exercices so-and-so. The

strenght in the extremities exept the left hand with bandage

are weak.

H e m o d : RRmap staying >65. In a sleep quite low

RR.Reduced amount of DRUGNAME and full stop in the

small huors. Steady SR.

D I U R E S I S : More DRUGNAME -> Diuresis > 150

ml/h. Fuzzy in the evening.

O T H E R : Son and his wife visiting.Hevay moistening to

mouth.

2006-02-01 04:55

b)

Long morning s

After admission fast FA which we treid to invert with

electrcity (x3) without result. later FA freq extremely

varying and quite economic. After 14 o'clock, pulse

occasionally tachycardic, slowed down with DRUGNAME

and DRUGNAME infusion (load 150 mg, maintenance

1200 mg/day). Inversion to SR at about

17.30.Hemodynamics quite stable, DRUGNAMEinfusion

cont with moder dosage.

Diuresis narrow, morning DRUGNAME.

PCWP highish (21). Adequate CI.

Dr flow normal, narrow.

Forenoon: despite medicatio, tried to breath 'against

respirator', which is the reason for relaxation (a couple of

times).

Own breatthing started and woke up regardless of sedation

& kooperative. With CPAP ok ox and ventilation.

2006-12-11 18:02

Figure 1: Example of Finnish nursing notes translated to English preserving all typing errors and typographical
properties. The Finnish originals are not included due to space considerations. Note the topic headings in report
a with the untypical use of the headingother instead of the more commonrelatives. In contrast toa, the reportb
does not contain explicit topic headings.

emission probabilities, the unsupervised method
only requires a single keyword for each topic.

4.1 Latent semantic analysis

LSA is a commonly applied technique for induc-
ing text similarity measures from co-occurrence
statistics in a large, unannotated corpus of text. In
our case, we use an LSA-based term-term simi-
larity measure. The standard LSA method based
on decomposition of the term-by-document ma-
trix is not applicable because the context in which
it measures word co-occurrence is the whole doc-
ument. In our case, however, the topic keywords
occur in the majority of documents — here docu-
ment refers to a single shift — and, more impor-
tantly, different topics tend to co-occur in a sin-
gle document, therefore not allowing document-
level distribution of terms to sufficiently distin-
guish the various topics. Instead, we apply the
Word Space model (Schütze, 1998) which de-
composes a term-by-term matrix and only con-
siders word co-occurrence within a fixed context
window rather than in the whole document, there-
fore allowing sub-document distributional proper-
ties to be accounted for.

We denote the LSA similarity of wordwj , j ∈
{1, . . . Nw}, to topic qi, i ∈ {1, . . . Nq}, as
lsa(wj , qi). HereNw is the vocabulary size,Nq

is the number of possible topics, andqi is the key-
word specified by the user for the respective topic.
In our experiments, we use the Finnish equiva-
lents of the keywordsbreathing, hemodynamics,

consciousness, relative anddiuresis to define the
five annotated topics. The sixth topic,other, is
characterized as an LSA queryother NOT breath-
ing NOT hemodynamics NOT consciousness NOT
relative NOT diuresis. The negation operator
NOT is available in Word Space LSA queries
(Widdows and Peters, 2003). The resulting LSA
scores are illustrated in Figure 2; they are ob-
tained by first performing LSA on unannotated
ICU narrative texts and then calculating the LSA
similarity of each vocabulary word with the re-
spective topic keyword (or LSA query with nega-
tions). Punctuation, numbers, and small number
of extremely common stop-words are excluded
from the LSA calculation.

4.2 Hidden Markov Models

We model the problem of segmenting the clini-
cal texts and assigning a topic to each resulting
segment as a sequence labeling task. Given an in-
put word sequencew = (w(1), . . . , w(T )), each
word w(t), t ∈ {1, . . . , T}, is assigned a topic
label q(t) ∈ {q1, . . . , qNq

}. Each wordw(t) be-
longs to the vocabulary{w1, . . . , wNw

}.
The sequence labeling problem can be solved

by an HMM withNq states wherew corresponds
to the visible sequence of observations and the
sequence of labelsq = (q(1), . . . , q(T )) corre-
sponds to the hidden sequence of HMM states.
We use a first-order HMM, thus a particular hid-
den variableq(t) only depends on the previous
hidden stateq(t − 1), and an observed variable
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Figure 2: Translated examples of the words most similar to selected topics and their associated LSA similarity
values.

w(t) is only dependent on the value of the hidden
variableq(t). Additionally, the initial probabil-
ity of states is uniformly distributed. The label-
ing given by the HMM is the best hidden state
sequencêq obtained by solving

q̂ = arg max
q∈Q

P (w, q), (1)

whereQ is the space of all hidden state sequences
and

P (w, q) = P (w(1)|q(1)) ·
T

∏

t=2

P (w(t)|q(t))P (q(t)|q(t − 1)).

The optimal sequencêq is known as the Viterbi
path and the optimization problem (1) can be effi-
ciently computed using the standard Viterbi algo-
rithm. For a detailed introduction to these algo-
rithms, see, for example, Rabiner (1989).

4.3 The proposed unsupervised method

In order to solve (1), the conditional probabilities
P (w(t)|q(t)), typically referred to as theemission
probabilities, andP (q(t)|q(t − 1)), typically re-
ferred to as thetransition probabilities, must be
defined. In the supervised case, these are obtained
from training data as maximum-likelihood esti-
mates. Here we aim to obtain these conditional
probabilities in a minimally-supervised manner
which does not require annotated training data.
To simplify the notation, we will refer in the fol-
lowing text, whenever possible, to the conditional
probabilitiesP (wj |qi) andP (qj |qi) without the
sequence indext.

4.3.1 Transition probabilities P (qj |qi)

We distribute the transition probabilities uni-
formly since, due to our unsupervised setting,

there is no annotated data available for direct es-
timation. In order to be able to control the like-
lihood of switching from one topic to another,
thus controlling the segmentation granularity, we
introduce aself-transition probability parameter
δ ∈ (0, 1). The HMM transition probability is
then defined as

P (qj |qi) =

{

δ if j = i
1−δ

Nq−1 if j 6= i
.

The probability of continuing the current topic is
thus δ, and the remaining probability1 − δ of
switching a topic is distributed evenly. Trivially,
∑

qj
P (qj |qi) = 1 for anyqi.

4.3.2 Emission probabilities P (wj |qi)

Our aim is to derive the value of the emission
probability P (wj |qi) from the LSA similarity
lsa(wj , qi) of the wordwj to the topicqi, or more
accurately to the keyword that defines the topic
qi. A straightforward approach is to normalize
the LSA similarity into probabilities so that

P (wj |qi) =
lsa(wj , qi)

∑Nw

k=1 lsa(wk, qi)
. (2)

This normalization strategy, however, assumes
that there is some total mass of relatedness to be
redistributed by LSA among the individual words
and that this mass is topic-independent. Other-
wise, a topic with a small number of related terms
will distribute the probability mass of1 among
a small number of words as opposed to a topic
with a large number of related terms. Conse-
quently, the emission probabilities of such a topic
will numerically dominate the calculation of the
Viterbi path q̂ and result in poor performance of
the model — an effect we have observed in our
early experiments. We avoid this type of numeri-
cal domination by relaxing the HMM model.



4.3.3 Relaxed graphical model

Instead of normalizing the LSA similarities by
Equation 2, we use the unnormalized LSA val-
ues directly. This yields a graphical model that
preserves the overall structure of an HMM but re-
places the emission probabilities with a quantity
that is not a probability. The optimal state se-
quence in this graphical model is then obtained
by solvingarg maxq∈Q C(w, q), where

C(w, q) = lsa(w(1), q(1)) ·
T

∏

t=2

lsa(w(t), q(t))P (q(t)|q(t − 1)).

Replacing the probabilityP (w(t)|q(t)) with
the non-probabilitylsa(w(t), q(t)) is the only dif-
ference between the HMM cost functionP (w, q)
and the relaxed model cost functionC(w, q). This
change does not violate any assumptions in the
Viterbi algorithm which thus remains directly ap-
plicable to the computation of the optimal se-
quence of states also in the relaxed model.

This relaxed formalization does not suffer from
the problem of a single topic numerically domi-
nating the cost function value and, in our prelimi-
nary experiments, resulted in a significant gain in
performance. However, a problem of mutual in-
comparability of the LSA similarity values across
topics persists; there is no basis for the implicit as-
sumption that the same LSA similarity value cor-
responds to the same underlying degree of relat-
edness, regardless of the topic in question. As an
illustrative example of the general problem, let us
consider a topicq1 defined by a single keyword
u1. We then havelsa(u1, q1) = 1 since the LSA
similarity of a word to itself is by definition1. On
the other hand, this does not hold for topics de-
fined by more than one keyword, where the simi-
larity of any of the several defining keywords with
the topic is strictly smaller than 1 (except in de-
generate cases). Consequently, the same degree
of relatedness does not necessarily correspond to
the same LSA similarity values across topics. A
re-scaling strategy is thus called for which would
aim to improve the numerical comparability of the
LSA values across topics. We introduce one such
possible strategy based on the following insight.

Let us consider words in the descending order
by their LSA similarity to a topicqi and compare
for each word its LSA similarity withqi and the
maximum of its LSA similarities with any topic

other thanqi (see Figure 3 for illustration). The
position in the ordering at which, for the first time,
a word has a higher similarity with a topic other
thanqi, which we refer to as theimpact index, nat-
urally divides the ordered list of words into two
parts. Words up to the impact index are those that
have a high LSA similarity to the topicqi and, at
the same time, do not have higher similarity with
any other topic. These words are thus strong in-
dicators of the topicqi. The LSA similarity of
the word at the impact index, which we refer to
as theimpact similarity is then, for the topicqi,
a natural cut-off point that gives the lowest LSA
similarity at which the words can yet be consid-
ered as strong indicators of the topic. Numeri-
cally, the impact index and impact index similar-
ity may vary significantly across topics.

Since the impact similarity has a clear intu-
itive interpretation, we propose a strategy which
re-scales the LSA values for each topic so that
the impact similarity is set to a given, topic-
independent constantα. Additionally, the re-
scaling sets the LSA similarity of the most similar
word for any topic as equal to 1 and the minimal
similarity of any word to any topic to be a con-
stantβ. The effect of this re-scaling is illustrated
in Figure 3.

We now proceed to define the re-scaling strat-
egy formally. Let us consider an ordering
πi of the words such that the valueπi(wj)
gives the index at which the wordwj is found
in a sequence of words ordered in descend-
ing order by their LSA similarity withqi. Let
lsa1(qi) = maxwj

lsa(wj , qi) and lsam(qi) =
minwj

lsa(wj , qi). Finally, let lsaI(qi) denote
the LSA similarity lsa(wj , qi) whereπi(wj) =
I(qi), that is, the impact point similarity for topic
qi. These quantities are illustrated in Figure 3.
The re-scaled LSA similarity, denotedlsa, is then
defined in Equation 3.

The optimal state sequence through our
final model is then obtained by solving
arg maxq∈Q C(w, q), where

C(w, q) = lsa(w(1), q(1)) ·
T

∏

t=2

lsa(w(t), q(t))P (q(t)|q(t − 1)).

To summarize, we have now obtained a graph-
ical model for unsupervised topic segmentation
and labeling of text that is closely related to first-
order HMMs. The transition probabilities other



lsa(wj , qi) =

{

1−α
lsa1(qi)−lsaI(qi)

· (lsa(wj , qi) − lsaI(qi)) + α if πi(wj) ≤ I(qi)
α−β

lsaI(qi)−lsam(qi)
· (lsa(wj , qi) − lsam(qi)) + β otherwise

(3)
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Figure 3: The effects of re-scaling the LSA similarity
values of the topicother by Equation 3. The re-scaled
LSA values are shown as a full line, the unscaled LSA
values as a dotted line, and the maximum LSA simi-
larity with any other topic as a gray line. The impor-
tant characteristics of the LSA values in this case are:
lsa1(qi) = 0.71, I(qi) = 322, lsaI(qi) = 0.41, and
lsam(qi) = 0. The re-scaling parameters areα = 0.7
andβ = 0.1.

than the parameterized self-transition probabil-
ity δ are uniformly distributed and the emission
probabilities are replaced by LSA similarity val-
ues that have been re-scaled to improve numerical
comparability across topics. The main difference
of this model and the standard supervised HMM
is that the proposed model does not require la-
beled training data. Instead, it only requires a set
of keywords defining the topics and large-enough
body of unannotated text on which the LSA is cal-
culated. The model is decoded using the standard
Viterbi algorithm.

5 Performance evaluation

We evaluate the proposed method on manually
annotated gold-standard data (see Section 3). The
test set consists of 204 and the training set of 198
annotated shifts randomly selected from 135 pa-
tient reports. If two shifts report on the same pa-
tient, both are placed either in the train set or in
the test set. LSA is calculated from all text avail-
able in the 448 patient reports from which no shift
was selected into the test set.

To reduce sparseness problems due to the
highly-inflective nature of Finnish, we lemma-

tize the text using a version of the FinTWOL
Finnish morphological analyzer1 (Koskenniemi,
1983) whose lexicon has been extended by ap-
proximately 3500 clinical domain terms. For ev-
ery word analyzed by FinTWOL, we use the first
lemma given, and for words outside of FinTWOL
lexicon, we use the unchanged surface word form.
The LSA similarity scores are computed using the
Infomap NLP software2 (Dorow and Widdows,
2003).

Since a fully-unsupervised parameter-selection
method is so-far not available, we select the pa-
rameters by grid search on a held-out set of 60
annotated shifts. These shifts are not part of the
test set in order to avoid overfitting the parame-
ter selection. The context window width is set to
30 words (left and right context both 15 words),
and the method parameters areδ = 0.6, α = 0.3,
andβ = 0.15. All other LSA-related parameters
(max number of singular values, number of Word
Space columns, etc.) are left at their default after
preliminary experiments indicated that they have
only marginal effect on the overall performance.

To establish the relative merit of the unsu-
pervised method, we compared its performance
against two other methods: a keyword-trigger
method and a comparable supervised learning
method. The keyword method is a simple base-
line that performs segmentation and labeling by
looking for the occurrence of the five topic key-
words (breathing etc.), assigning each word to
a labeled segment corresponding to the previous
seen keyword. The assigned label is given the ini-
tial valueother at the start of each shift. To al-
low the keyword-based approach to benefit from
the normalizing effect of morphological analysis,
the trigger words are matched against the lemmas
given by FinTWOL.

The supervised method compared to is a ba-
sic first-order HMM. This choice is made not out
of ignorance of advances such as conditional ran-
dom fields (see, e.g., (Sutton et al., 2007)), but
rather as HMM is a close supervised equivalent
of the proposed model — we sought to determine

1http://www.lingsoft.fi/
2http://infomap-nlp.sourceforge.net/



Accuracy WindowDiff
majority baseline 23.4 0.32
keyword baseline 66.9 0.16
unsupervised model 74.9 0.23
supervised HMM 82.9 0.21

Table 1: Performance of the three compared methods.
Note that for WindowDiff lower value indicates better
performance — a perfect segmentation obtains Win-
dowDiff score of zero. Majority baseline refers to as-
signing the most common topic in the data (conscious-
ness) to all tokens.

the relative efficiency of the unsupervised and su-
pervised alternatives in setting the parameters of
the graphical model. For the HMM, the only pa-
rameter, the smoothing model and its setting, was
selected on the training set by a separate search of
the parameter space so as to avoid overfitting the
test set. The selected optimal smoothing model
was Lidstone (add-γ) smoothing withγ = 0.3.

The primary evaluation measure is micro-
averaged accuracy, the proportion of words in the
test set with correctly identified label. Further, we
report macro-averaged WindowDiff (Pevzner and
Hearst, 2002) score, which is often used to eval-
uate segmentation quality independently of the
topic labels. The WindowDiff window size was
set to half of the average segment size in the gold
standard data, a standard way to set this parame-
ter. Note that WindowDiff only takes into account
the positions of segment boundaries, ignoring the
topic labels.

6 Results and discussion

The performance of the methods on the test set
(204 shifts, 15839 tokens) is reported in Table 1.
As expected, the accuracy of the unsupervised
model is between the performance of the keyword
baseline and the supervised HMM. The unsuper-
vised model considerably outperforms the key-
word baseline. Further, it is not surprising that the
supervised HMM performs better than the unsu-
pervised model, considering that it receives much
more detailed information about the distribution
of words with respect to topics.

Interestingly, the WindowDiff results are in dis-
agreement with the accuracy results, with the key-
word baseline reaching better WindowDiff per-
formance than even the supervised HMM. We
have currently no explanation for this highly unin-
tuitive secondary result. Nevertheless, as the un-
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Figure 4: Learning curve for the supervised baseline
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Figure 5: Learning curve for the unsupervised method.

supervised method performs nearly at the level of
the supervised in terms of WindowDiff and this
measure does not take into account the assigned
labels, a key aspect of the method, we do not view
this result as compromising the positive primary
findings in terms of accuracy. In the following,
we will only focus on accuracy results.

An interesting question to ask here is how
many words of labeled data does the HMM re-
quire to reach the accuracy of the unsupervised
method. The learning curve of the HMM, that
is the dependence of its accuracy on the amount
of available training data, is given in Figure 4.
Here we observe that in order to reach the per-
formance of the unsupervised method, it is neces-
sary to manually label roughly 3600 words. For
comparison, the learning curve for the unsuper-
vised method is shown in Figure 5; the curve is
generated by varying the amount of text avail-
able to calculate the LSA. Here we see that the
peak performance is reached after about 360,000
words (150 full patient reports). Note that for the
unsupervised method the text is not manually la-
beled; gathering the amount of data necessary for
reaching the peak performance does not involve
any manual annotation effort, unlike in the case
of the supervised HMM.



7 Conclusions and future work

We have introduced an unsupervised method for
TS and labeling based on a combination HMMs
and LSA. We have shown that, in order to reach
the performance of the unsupervised method, a
standard HMM would require 3600 words of la-
beled training data, as opposed to just one key-
word per topic necessary for the unsupervised
method. The proposed method is thus applica-
ble to information search tasks with freely-chosen
topics and no labeled data available. We have ap-
plied the method to a real-life clinical task.

In further research, several crucial questions
will be investigated. First is that of unsupervised
selection of the parameters of the system (such as
the LSA window width and self-transition prob-
ability δ). The second open question is whether
the current proposed model can be re-normalized
to obtain an actual HMM without loss of perfor-
mance. This would open further interesting direc-
tions such as the possibility to use the LSA-based
HMM model as an initial state for further unsu-
pervised training of the method, for instance by
the standard Baum-Welch algorithm. Finally, a
general way of modeling the topicother is needed
for applications where some segments do not be-
long to any keyword-defined topic.
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