
Syntactic Pattern Matching with GraphSpider and MPL
Andrew B. Clegg

Research Dept. of Structural
and Molecular Biology

University College London
andrew.clegg@gmail.com

Adrian J. Shepherd
School of Crystallography

Birkbeck, University of London
a.shepherd@mail.cryst.bbk.ac.uk

Abstract

We present MPL (Metapattern Language),
a new formalism for defining patterns over
dependency-parsed text, and GraphSpider,
a matching engine for extracting depen-
dency subgraphs which match against MPL
patterns. Using a regexp-like syntax, MPL
allows the definition of subgraphs matching
user-specified patterns which can be con-
strained by word or word class, part-of-
speech tag, dependency type and direction,
and presence of named variables in partic-
ular locations. Although MPL and Graph-
Spider are general-purpose, we developed
a set of patterns to capture biomolecular
interactions which achieved very high pre-
cision results (92.6% at 31.2% recall) on
the LLL Challenge corpus. MPL specifi-
cations and pattern sets, and the GraphSpi-
der software, are available on SourceForge:
http://graphspider.sf.net/

1 Introduction

Various syntactic parsing methods have been used
to provide input data for natural-language pro-
cessing (NLP) tasks in the biomedical domain.
The rich grammatical information provided by
different kinds of parsers can be useful in rela-
tionship extraction (Riedel and Klein, 2005) and
classification (Rosario and Hearst, 2004), event
extraction (Yakushiji et al., 2001), semantic in-
terpretation (Grover et al., 2005), named-entity
recognition (Finkel et al., 2004), term extraction
(Aronson, 2001), and information retrieval (Shi
et al., 2005). This diversity of usage scenarios
for syntax data, coupled with the growing avail-
ability of syntactically-annotated biomedical text
(Tateisi et al., 2005; Kulick et al., 2004; Pyysalo
et al., 2007a), suggests that general-purpose tools
for querying and manipulating syntactic struc-
tures may be useful to researchers in this field.

In order to facilitate our experiments with de-
pendency parsing of biomedical sentences, we de-
veloped a language for defining patterns over de-
pendency graphs, plus a tool for matching pat-

terns to sentences and extracting graph nodes of
interest. Although this work was carried out in the
context of a research project in gene/protein in-
teraction extraction, there is nothing in either the
language specification or software which is spe-
cific to this task or indeed to biological applica-
tions in general.

Several tools already exist for searching con-
stituent tree representations of parsed sentences.
The best-known of these is TGrep21 which is it-
self a successor to the original tgrep2 that was de-
veloped alongside the Penn Treebank (Marcus et
al., 1994). Both allow the construction of patterns
of arbitrary complexity resembling hierarchical
regular expressions, which constrain searches by
words, part-of-speech (POS) tags and constituent
labels, along with the positions in a subtree these
elements must hold relative to each other. Similar
features are provided by Tregex (Levy and An-
drew, 2006). All of these tools were designed
to operate on Penn Treebank-style trees; equiv-
alents for other annotation schemas are provided
by JAPE, part of the GATE package (Cunningham
et al., 2007), CQP, part of the IMS Corpus Work-
bench (Christ, 1994), and Mother of Perl (Doran
et al., 1996). NetGraph (Mı́rovský, 2008) is de-
signed specifically for dependency graphs but is
rather a complex client-server system. The Onto-
Gene project at the University of Zurich has de-
veloped a system very similar to ours (Rinaldi et
al., 2006), but it is available only via a web inter-
face, with no source or binaries, making it much
less useful for other researchers. None of these
tools can perform noun phrase chunking on-the-
fly (see below), and none provide native support
for the Stanford dependency grammar (de Marn-
effe et al., 2006), which our own systems use, and
which has been proposed as a convenient com-
mon schema for syntactic annotation and process-
ing of biomedical text (Pyysalo et al., 2007b).

1http://tedlab.mit.edu/˜dr/TGrep2/
2http://www.ldc.upenn.edu/ldc/online/

treebank/

2 Metapattern Language (MPL)

An MPL file is composed of three kinds of rules,
which taken together, specify a set of patterns to
search for. Match rules define variables which
hold either plain text strings or regular expres-
sions, designed to match words, POS tags or de-
pendency types in a graph. For example, the
following rule declares a variable @VERB which
matches any two or three-character string starting
with the letters VB, and is designed to match POS
tags like VBN, VBZ etc.:
match @VERB = ˆVB.?$

Pattern rules are composed of variables, lit-
eral strings and connectors, and describe the sub-
graphs which the matching engine must attempt
to find in the input sentences. Subgraphs are de-
fined in terms of nodes (words with POS tags)
connected by directional, labeled dependencies,
although of course wildcard variables can be
used in order to leave any of these elements un-
specified. The simplest possible pattern simply
matches a single node by tag and word, for exam-
ple NN˜˜regulation. The following pattern
matches fragments of the form 〈agent〉 inhibits
〈target〉; inhibits is specified literally, as are the
POS tags (VBZ and NN) and the dobj direct ob-
ject dependency, while the agent and target enti-
ties and the subject dependency refer to variables:
pattern
VBZ˜˜inhibits

(@NSUBJ NN˜˜@AGENT)
(dobj NN˜˜@TARGET)

end

Finally, replacement rules allow variations on
explicitly-defined patterns to be generated auto-
matically, to capture known wording alternatives
or common variations on simple structures. They
take the form of string replacement rules that are
applied in turn to each of the patterns in the MPL
file. They can operate on any part of a pattern rule
(from a single word, POS tag or dependency to an
entire subgraph) as long as the resulting pattern
is well-formed. The following rule shows how a
node matching a single string can be replaced by
one matching a simple prepositional phrase:
replace @TARGET = expression

(prep_of NN˜˜@TARGET)

Applying this replacement rule to the example
pattern given above results in the following pat-
tern:

VBZ˜˜inhibits
(@NSUBJ NN˜˜@AGENT)
(dobj NN˜˜expression

(prep_of NN˜˜@TARGET))

This automatically-generated pattern will match
sentence fragments like 〈agent〉 inhibits expres-
sion of 〈target〉. Note that since the pattern is
defined over syntactic dependencies rather than
linear strings of text, additional words interven-
ing between any of the words covered by the pat-
tern will not stop it matching, provided the gram-
matical relations between the matched words are
correct. In other words, a sentence like 〈agent〉
inhibits 〈entity〉-mediated expression of 〈target〉
will still be matched.

Although one could attempt to define match
rules to recognize named entities using regular ex-
pressions or lists of entity names, this is not likely
to be successful except in very specific circum-
stances. Instead, we suggest that the user pre-
processes the text with a named entity recognizer,
then replaces all the entities found with place-
holders (e.g. Entityaa . . . Entityzz) that can be
easily and unambiguously found by match rules
using regular expressions. If a record of place-
holder substitutions is kept, the original entity
name behind each placeholder can be recovered
trivially. Alternatively, if the variables such as
@AGENT and @TARGET are defined with unre-
stricted wildcard expressions, then any word—or
chunked phrase, see below—playing the appro-
priate syntactic role in a pattern will be identi-
fied. This approach turns the problem of named-
entity recognition on its head, by assuming that
any names found in expressions like X inhibits
expression of Y represent biologically-interesting
entities.

MPL offers several features beyond those de-
scribed here, but does not yet support cycles or
multiple parentage, meaning that its patterns are
strictly trees rather than graphs. However, in eval-
uation (see below) we found no occasions when
this was problematic.

3 GraphSpider

GraphSpider is a Java-based tool for performing
MPL searches. It requires the Stanford parser
distribution3 to be installed, although it can ac-
cept the output of any constituent parser that uses

3http://nlp.stanford.edu/software/
lex-parser.shtml

standard bracketed tree notation and Penn Tree-
bank labels, or pre-generated Stanford-style de-
pendency graphs in its own file format. If the text
is supplied in trees, the conversion algorithm sup-
plied with the Stanford parser is used to generate
the dependency graphs (de Marneffe et al., 2006).

GraphSpider consists of two major compo-
nents, an MPL parser and a matching engine. The
MPL parser is responsible for reading in a pat-
tern file supplied by the user, applying all replace-
ment rules where possible in order to generate
variant patterns, and compiling the patterns into
in-memory representations. The matching engine
then iterates over the sentences supplied, and for
each one, finds every location where any pattern
matches against the dependency graph of the sen-
tence, including overlapping matches and loca-
tions where multiple patterns can match. It can
then output the results for the sentence in one of
several user-specified formats, ranging in scope
from the entire sentence to just the nodes (words)
that have matched against variables in the pattern.

Optionally, GraphSpider can apply a noun-
phrase chunking algorithm to all constituent trees
before converting them into dependency graphs.
This simply identifies noun phrases with inter-
nal structure and flattens them into single words
with the spaces replaced by underscores. The
resulting graphs will tend to be much simpler,
with single nodes encapsulating entire compound
noun phrases (including adjectives, determiners
and participles). However, MPL patterns must
be written specifically to target chunked graphs,
as pattern rules designed to match against tra-
ditional word-per-node graphs will not work on
them. There is also a mechanism for plugging in
Java classes for ad-hoc post-processing of the re-
sults, which we used to implement negation filter-
ing.

4 Applications

Given a set of patterns capturing syntactic repre-
sentations of biological events or interactions, and
a corpus of parsed sentences, GraphSpider can be
used to extract the entities, the keywords describ-
ing their relationships, and optionally any other
words of interest. To a certain extent, phrasing
variations and parse errors can be accounted for
by the use of replacement rules to generate vari-
ant patterns automatically.

To test this approach, we developed a pat-

tern set based on the training set from the LLL
Challenge gene interaction task (Nédellec, 2005),
and ran it against the test set, after replacing all
gene/protein names in the sentences with place-
holders. Although its coverage of the test set was
comparatively low (31.2% recall), the predictions
it did make were very accurate indeed (92.6%
precision), suggesting that this method would be
well-suited to unsupervised applications which
require as little noise as possible in the results.
We determined that these scores were achievable
with as few as 29 hand-crafted patterns and 49
replacement rules, giving rise to 228 patterns in
total (Clegg, 2008). Part of the reason for the low
recall is that this method is sensitive to small parse
errors which are not foreseen during the pattern
engineering stage.

Another usage scenario is in exploratory corpus
analysis and interactive text mining. By design-
ing appropriate patterns, one can use GraphSpi-
der to answer questions like “what entities bind
to protein A?”, “what temporal/locative modi-
fiers are applied to expression of gene B?” (i.e.
when/where does expression take place?), and
“what verbs take a gene/protein phrase as their
subject or object?”. We have used this last tech-
nique to automatically extract keyword lists for
the creation of further patterns.

The input/output and processing options sup-
ported by GraphSpider enable it to be used in a
variety of alternative modes as well. For example,
it can act simply as a noun phrase chunker, by by-
passing the pattern matching engine completely
in order to turn traditional constituent trees into
chunked graphs. Similarly, it can strip the tree or
graph annotation from a sentence and return just
the plain text. And its ability to save and load
dependency graphs in a human- and machine-
readable format provides valuable functionality
missing from the Stanford parsing toolkit.

We present MPL and GraphSpider in the hope
that the NLP community finds them useful, and
not just in the biological context where they were
developed. All feedback, code or pattern contri-
butions, and suggestions for future developments,
are of course welcomed.

References
Alan R Aronson. 2001. Effective mapping of biomed-

ical text to the UMLS Metathesaurus: the MetaMap
program. In Proceedings of the American Medical

Informatics Association Symposium, pages 17–21.
Hanley and Belfus, Inc.

Oliver Christ. 1994. A modular and flexible archi-
tecture for an integrated corpus query system. In
Proceedings of the Third Conference on Computa-
tional Lexicography and Text Research (COMPLEX
’94), pages 23–32, Budapest.

Andrew B. Clegg. 2008. Computational-Linguistic
Approaches to Biological Text Mining. PhD thesis,
Birkbeck, London.

Hamish Cunningham, Diana Maynard, Kalina
Bontcheva, Valentin Tablan, Cristian Ursu, Marin
Dimitrov, Mike Dowman, Niraj Aswani, Ian
Roberts, Yaoyong Li, and Andrey Shafirin. 2007.
Developing Language Processing Components with
GATE Version 4 (a User Guide). The University of
Sheffield, http://www.gate.ac.uk/.

Marie-Catherine de Marneffe, Bill MacCartney, and
Christopher D Manning. 2006. Generating typed
dependency parses from phrase structure parses.
In Proceedings of 5th International Conference on
Language Resources and Evaluation (LREC2006),
Genoa, Italy, May.

Christine Doran, Michael Niv, Breck Baldwin, Jeffrey
Reynar, and B. Srinivas. 1996. Mother of Perl: A
multi-tier pattern description language. Technical
report, Department of Computer Science, Univer-
sity of Pennsylvania.

Jenny Finkel, Shipra Dingare, Hoy Nguyen, Malvina
Nissim, Christopher Manning, and Gail Sinclair.
2004. Exploiting context for biomedical entity
recognition: From syntax to the web. In Nigel Col-
lier, Patrick Ruch, and Adeline Nazarenko, editors,
Proceedings of the International Joint Workshop on
Natural Language Processing in Biomedicine and
its Applications (JNLPBA), pages 88–91, Geneva,
Switzerland, August 28–29.

Claire Grover, Mirella Lapata, and Alex Lascarides.
2005. A comparison of parsing technologies for
the biomedical domain. Natural Language Engi-
neering, 11(1):27–65.

Seth Kulick, Ann Bies, Mark Liberman, Mark Man-
del, Ryan McDonald, Martha Palmer, Andrew
Schein, Lyle Ungar, Scott Winters, and Pete White.
2004. Integrated annotation for biomedical infor-
mation extraction. In Lynette Hirschman and James
Pustejovsky, editors, HLT-NAACL 2004 Workshop:
BioLINK 2004, Linking Biological Literature, On-
tologies and Databases, pages 61–68, Boston, Mas-
sachusetts, USA, May 6. Association for Computa-
tional Linguistics.

Roger Levy and Galen Andrew. 2006. Tregex and
Tsurgeon: tools for querying and manipulating tree
data structures. In Proceedings of 5th International
Conference on Language Resources and Evaluation
(LREC2006), Genoa, Italy, May.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1994. Building a large annotated

corpus of English: The Penn Treebank. Computa-
tional Linguistics, 19(2):313–330.

Jiřı́ Mı́rovský. 2008. Netgraph—making searching
in treebanks easy. In Proceedings of the Third In-
ternational Joint Conference on Natural Language
Processing (IJCNLP 2008), pages 945–950, Hyder-
abad, India, January.

Claire Nédellec. 2005. Learning Language in
Logic—Genic Interaction Extraction Challenge.
In Proceedings of Learning Language in Logic
(LLL05), Bonn, Germany, August.

Sampo Pyysalo, Filip Ginter, Juho Heimonen, Jari
Björne, Jorma Boberg, Jouni Järvinen, and Tapio
Salakoski. 2007a. BioInfer: a corpus for infor-
mation extraction in the biomedical domain. BMC
Bioinformatics, 8(50), February.

Sampo Pyysalo, Filip Ginter, Veronika Laippala, Katri
Haverinen, Juho Heimonen, and Tapio Salakoski.
2007b. On the unification of syntactic annotations
under the Stanford dependency scheme: A case
study on BioInfer and GENIA. In Proceedings of
the Workshop on BioNLP 2007: Biological, trans-
lational, and clinical language processing, pages
25–32, Prague, Czech Republic, June. Association
for Computational Linguistics.

Sebastian Riedel and Ewan Klein. 2005. Genic
interaction extraction with semantic and syntactic
chains. In Proceedings of Learning Language in
Logic (LLL05), Bonn, Germany, August.

Fabio Rinaldi, Gerold Schneider, Kaarel Kaljurand,
Michael Hess, and Martin Romacker. 2006. An en-
vironment for relation mining over richly annotated
corpora: the case of GENIA. BMC Bioinformatics,
7 (Suppl 3)(S3), November.

Barbara Rosario and Marti Hearst. 2004. Classify-
ing semantic relations in bioscience texts. In Pro-
ceedings of the 42nd Meeting of the Association for
Computational Linguistics (ACL’04), Main Volume,
pages 430–437, Barcelona, Spain, July.

Zhongmin Shi, Baohua Gu, Fred Popowich, and
Anoop Sarkar. 2005. Synonym-based query ex-
pansion and boosting-based re-ranking: A two-
phase approach for genomic information retrieval.
In Proceedings of the Fourteenth Text REtrieval
Conference (TREC 2005), Gaithersburg, Maryland,
November.

Yuka Tateisi, Akane Yakushiji, Tomoko Ohta, and
Jun’ichi Tsujii. 2005. Syntax annotation for the
GENIA corpus. In Proceedings of the International
Joint Conference on Natural Language Processing
2005, Companion volume, pages 222–227, Jeju Is-
land, Korea, October.

Akane Yakushiji, Yuka Tateisi, Yusuke Miyao, and
Jun’ichi Tsujii. 2001. Event extraction from
biomedical papers using a full parser. In Proceed-
ings of the Sixth Pacific Symposium on Biocomput-
ing, pages 384–395. World Scientific Publishing.

